Exploring Discriminatory Features for Automated Malware Classification
نویسندگان
چکیده
The ever-growing malware threat in the cyber space calls for techniques that are more effective than widely deployed signature-based detection systems and more scalable than manual reverse engineering by forensic experts. To counter large volumes of malware variants, machine learning techniques have been applied recently for automated malware classification. Despite the successes made from these efforts, we still lack a basic understanding of some key issues, such as what features we should use and which classifiers perform well on malware data. Against this backdrop, the goal of this work is to explore discriminatory features for automated malware classification. We conduct a systematic study on the discriminative power of various types of features extracted from malware programs, and experiment with different combinations of feature selection algorithms and classifiers. Our results not only offer insights into what features most distinguish malware families, but also shed light on how to develop scalable techniques for automated malware classification in practice.
منابع مشابه
An automated approach to analysis and classification of Crypto-ransomwares’ family
There is no doubt that malicious programs are one of the permanent threats to computer systems. Malicious programs distract the normal process of computer systems to apply their roguish purposes. Meanwhile, there is also a type of malware known as the ransomware that limits victims to access their computer system either by encrypting the victimchr('39')s files or by locking the system. Despite ...
متن کاملMalware Detection using Classification of Variable-Length Sequences
In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملAutomated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملWavelet Statistical Feature Based Malware Class Recognition and Classification using Supervised Learning Classifier
Malware is a malicious instructions which may harm to the unauthorized private access through internet. The types of malware are incresing day to day life, it is a challenging task for the antivius vendors to predict and caught on access time. This paper aims to design an automated analysis system for malware classes based on the features extracted by Discrete Wavelet Transformation (DWT) and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013